Quantitative Methods for the Determination of Nanostructures using Sub-Angstrom Electron Probes

Jo-Ann Etheridge

Monash Centre for Electron Microscopy and Department of Materials Engineering, Monash University, Australia

October 1, 2012

ABSTRACT

The advent of electron probes smaller than one Angstrom in diameter is enabling data to be obtained selectively from atomic-scale volumes of a specimen. This offers the prospect of extracting information about the type, position and bonding of specific atoms within a specimen. This talk will describe the development and application of three different methods in quantitative imaging and diffraction using sub-Angstrom electron probes and will illustrate these with a range of applications, such as the measurement of the shape and surface facets of nanoparticles; the atomic structure of alloy precipitates; the long-range diamond and chessboard nanostructures in lithium-based titanate perovskites; and the bonding charge distribution in aluminium.

The talk will cover briefly methods to interpret the absolute intensity and contrast in atomic-resolution annular dark-field (ADF) scanning transmission electron microscope (STEM) images, without recourse to any adjustable parameters; new STEM imaging methods using detectors located in a plane conjugate to the specimen, rather than the diffraction plane; and quantitative methods in convergent beam electron diffraction for the determination of structure and bonding in crystals.